Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 25: 58-63, ene. 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-1008708

ABSTRACT

Background: Sulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (N60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology. Results: In this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1). Conclusions: The results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.


Subject(s)
Sulfides/metabolism , Archaea/metabolism , Biofilms , Oxidation-Reduction , Phylogeny , Polymerase Chain Reaction , Sulfolobus , Archaea/isolation & purification , Archaea/genetics , Polyethylene , Hot Springs/microbiology , Electrophoresis , Filtration , Extremophiles , Hot Temperature
2.
Electron. j. biotechnol ; 14(1): 7-8, Jan. 2011. ilus, tab
Article in English | LILACS | ID: lil-591925

ABSTRACT

Sulphur Oxidizing Bacteria (SOB) is a group of microorganisms widely used for the biofiltration of Total Reduced Sulphur compounds (TRS). TRS are bad smelling compounds with neurotoxic activity which are produced by different industries (cellulose, petrochemical). Thiobacillus thioparus has the capability to oxidize organic TRS, and strains of this bacterium are commonly used for TRS biofiltration technology. In this study, two thiosulphate oxidizing strains were isolated from a petrochemical plant (ENAP BioBio, Chile). They were subjected to molecular analysis by real time PCR using specific primers for T. thioparus. rDNA16S were sequenced using universal primers and their corresponding thiosulphate activities were compared with the reference strain T. thioparus ATCC 10801 in batch standard conditions. Real time PCR and 16S rDNA sequencing showed that one of the isolated strains belonged to the Thiobacillus branch. This strain degrades thiosulphate with a similar activity profile to that shown by the ATCC 10801 strain, but with less growth, making it useful in biofiltration.


Subject(s)
Animals , Halothiobacillus , Halothiobacillus/genetics , Thiobacillus , Thiobacillus/enzymology , Thiobacillus/genetics , Thiosulfates/metabolism , Thiosulfates/chemistry , Oil and Gas Industry/methods
SELECTION OF CITATIONS
SEARCH DETAIL